Federal Pacific Manual Dead-Front Type PSE Pad-Mounted Switchgear meets or exceeds all ratings in IEEE C37.74, and with UL® Listing of both 15kV and 25kV models. The enclosure provides increased security of fuse and switch components from environmental concerns and enhanced isolation of medium-voltage circuits to limit exposure of operating personnel.

Federal Pacific PSE pad-mounts feature a low-profile, heavy-gauge enclosure with cross-kinked roof to eliminate potential for standing water. Stainless-steel hinges and hinge pins combined with the padlockable, self-resetting, three-point, auto-latch door security system assures durability while controlling access to the interior.

Double-door construction allows clear access to elbow terminations. Ground rods that are full width of door opening make grounding of circuits and installation of surge arresters easy to achieve using shotgun clampstick. Enclosure bottom flange includes gasketing to isolate and protect the finish during installation and throughout the service life of the switchgear. Galvanized-steel floor plate on bottom of compartment containing medium-voltage components isolates interior from moisture and ingress of other contaminates.

The electrostatically deposited, baked-on powder epoxy finish meets IEEE, ANSI and UL® requirements and provides a tough, durable high-gloss finish with protective qualities essential to insure long-term protection of the metal.

Figure 1
Federal Pacific Dead-Front PSE Pad-Mounted Switchgear (available as UL® Listed) contains an integrated system of fuses and switches with access control features to minimize exposure to high voltage during switching and re-fusing operations.
Figure 2

Enclosure integrity and security is assured with Federal Pacific pad-mounted switchgear.

Figure 3

Switch termination compartments allow visual verification of switch blade position and clear access to elbow terminations in Federal Pacific Dead-front PSE Pad-Mounted Switchgear.
Figure 4
Interior view of fuse-termination compartment of Federal Pacific PSE Pad-Mounted Switchgear includes many features to assure ease of operation for operating personnel when switching, inspecting and re-fusing 200-ampere circuits.
15kV Basic Units-Three-Phase

14.4kV Nominal • 17kV Maximum Design • 95 kV BIL

Circuit Diagrams with Compartment Numbers

PSE Pad-Mounted Switchgear is designed for use only by qualified personnel trained to operate medium-voltage switchgear. Users other than electric utilities are required to use key interlocking devices as applicable. Should non-utility users elect not to use key interlocks, they must submit written certification that only qualified and trained personnel will operate the equipment, and that key interlock systems are not required.

Model PSE-4 is available only to electric utilities.

All units are 45° high without base spacers.

To determine complete catalog number for PSE models with fuse compartments substitute for “*” shown as last figure in catalog number listed below each diagram on this page the number shown in the following table:

<table>
<thead>
<tr>
<th>Compartment</th>
<th>Catalog No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S&C Type SM-4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>S&C Type SMU-20</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Eaton DBU</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Cooper Type CMU</td>
<td></td>
</tr>
</tbody>
</table>
Current Ratings - 15 kV Basic Units

15kV Basic Units
Switch Only Units, PSE -3, -10, -13

<table>
<thead>
<tr>
<th>Fuse Manufacturer and Type</th>
<th>Unit Overall Ratings</th>
<th>Fuse Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amperes RMS Short Circuit</td>
<td>Amperes RMS</td>
</tr>
<tr>
<td></td>
<td>Momentary ASYM</td>
<td>MVA 3-Phase SYM at 14.4 kV</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>Interrupting SYM</td>
</tr>
<tr>
<td>S&C SM-4</td>
<td>20,000</td>
<td>310</td>
</tr>
<tr>
<td>S&C SMU-20</td>
<td>22,400</td>
<td>350</td>
</tr>
<tr>
<td>Eaton DBU and Cooper CMU</td>
<td>20,000</td>
<td>350</td>
</tr>
<tr>
<td>Cooper (M-E) Type NX</td>
<td>22,400</td>
<td>620</td>
</tr>
<tr>
<td>Cooper (CT) X-Limiter</td>
<td>22,400</td>
<td>620</td>
</tr>
</tbody>
</table>

1. SM-4 fused units require three S&C Cat. No. 86632R2 SM-4Z fuseholders and three S&C SM-4 fuse refills per fuse compartment. †
2. SMU-20 fused units require three Federal Pacific FP-3097 and three S&C SMU-20, Eaton DBU or Cooper CMU fuse units per fuse compartment. †
3. DBU fused units require three Federal Pacific FP-3097 end fittings and three Eaton DBU or S&C SMU-20 fuse units per fuse compartment. †
4. NX fused units require three appropriately rated fuses per fuse compartment. †
5. X-Limiter fused units require three appropriately rated fuses per fuse compartment.
6. CMU fused units require three Federal Pacific FP-3097 end fittings and three Cooper CMU, Eaton DBU or S&C SMU-20 fuse units per fuse compartment.

7. Ratings expressed in RMS amperes asymmetrical are 1.6 times the symmetrical values listed.
8. Unit overall ratings are limited to the lowest component rating.
9. SM-5 fuses cannot be used in PSE Pad-Mounted Switchgear. Contact the factory fuse-unit for SM-5 applications.

† For fuse application and ordering information, refer to the applicable fuse manufacturer literature.

* Three-time fault close rating. The Auto-jet® switch can be closed into a fault of the magnitude specified three times and remain operable and able to carry and interrupt the rated current.

**UL® Listed equipment is available at both 14kA sym/22.4kA asym and 25kA sym./40kA asym.

Auto-jet® II Switch Ratings - Amps RMS

<table>
<thead>
<tr>
<th>Continuous Current</th>
<th>Load and Loop Switching</th>
<th>Short-Circuit Withstand Current (Sym.)</th>
<th>3-Time Fault-Close (Asym.)</th>
<th>Peak Withstand Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>600**</td>
<td>600**</td>
<td>14,000</td>
<td>22,400</td>
<td>36,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25,000</td>
<td>40,000</td>
<td>65,000</td>
</tr>
</tbody>
</table>
PSE Pad-Mounted Switchgear is designed for use only by qualified personnel trained to operate medium-voltage switchgear. Users other than electric utilities are required to use key interlocking devices as applicable. Should non-utility users elect not to use key interlocks, they must submit written certification that only qualified and trained personnel will operate the equipment, and that key interlock systems are not required.

Model PSE-4 is available only to electric utilities.

All units are 51" high without base spacers.

To determine complete catalog number for PSE models with fuse compartments substitute for "*" shown as last figure in catalog number listed below each diagram on this page the number shown in the following table:

<table>
<thead>
<tr>
<th></th>
<th>S&C Type SM-4</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S&C Type SMU-20</td>
<td>5 Cooper (M-E) Type NX</td>
</tr>
<tr>
<td>2</td>
<td>Eaton DBU</td>
<td>7 Cooper (CT) X-Limiter</td>
</tr>
<tr>
<td>2</td>
<td>Cooper Type CMU</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S&C Type SM-4</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S&C Type SMU-20</td>
<td>5 Cooper (M-E) Type NX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Eaton DBU</td>
<td>7 Cooper (CT) X-Limiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cooper Type CMU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSE-3 46" W x 81-3/4" D
Catalog No. 52100

PSE-4 46" W x 79-1/2" D
Catalog No. 5201*

PSE-5 46" W x 81-3/4" D
Catalog No. 5211*

PSE-6 84" W x 81-3/4" D
Catalog No. 5321*

PSE-7 84" W x 81-3/4" D
Catalog No. 5312*

PSE-8 84" W x 81-3/4" D
Catalog No. 5412*

PSE-9 84" W x 81-3/4" D
Catalog No. 5422*

PSE-10 84" W x 88-1/4" D
Catalog No. 54400

PSE-11 84" W x 88-1/4" D
Catalog No. 5431*

PSE-12 84" W x 81-3/4" D
Catalog No. 5413*

PSE-13 84" W x 88-1/4" D
Catalog No. 54300
Current Ratings - 25kV Basic Units

25kV Basic Units
Switch Only Units, PSE

<table>
<thead>
<tr>
<th>Auto-jet® II Switch Ratings - Amps RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Current</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Three-time fault close rating. The Auto-jet® II switch can be closed into a fault of the magnitude specified three times and remain operable and able to carry and interrupt the rated current.

**UL® Listed equipment is available at 25kA sym./40kA asym.

Switch/Fuse Units: PSE-5, -6, -7, -8, -9, -11, -12, -14

<table>
<thead>
<tr>
<th>Fuse Manufacturer and Type</th>
<th>Unit Overall Ratings ①</th>
<th>Fuse Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amperes RMS Short Circuit</td>
<td>MVA 3-Phase SYM at 25kV</td>
</tr>
<tr>
<td></td>
<td>Momentary ASYM</td>
<td></td>
</tr>
</tbody>
</table>

S&C SM-4†	20,000	540	200	12,500
S&C SMU-20	20,000	540	200	14,000
Eaton DBU and Cooper CMU	20,000	540	200	14,000
Cooper (M-E) Type NX	40,000	1,080	①	50,000
Cooper (CT) X-Limiter	40,000	1,080	①	50,000

① Applicable to solidly-grounded-neutral systems only with fuses connected by single-conductor, concentric-neutral type cable to a transformer or transformers. Rating is 9,400 amperes RMS symmetrical, 15,040 amperes RMS asymmetrical (405 MVA) for all other applications.

② Ratings expressed in RMS amperes asymmetrical are 1.6 times the symmetrical values listed.

③ Unit overall ratings are limited to the lowest component rating.

④ SM-5 fuses cannot be used in PSE Pad-mounted Switchgear. Contact the factory for SM-5 applications.

†† For fuse application and ordering information, refer to the applicable fuse manufacturer literature.
Optional Features

BASE SPACER — MILD STEEL
Non-compartmented (Applicable to all models)
A2...............................6" to increase cable terminating height
A3...............................12" to increase cable terminating height
A4...............................18" to increase cable terminating height
A5...............................24" to increase cable terminating height

Compartmented (Applicable to all models)
A6...............................6" to increase cable terminating height
A7...............................12" to increase cable terminating height
A8...............................18" to increase cable terminating height
A9...............................24" to increase cable terminating height

BASE SPACER — STAINLESS STEEL
Non-compartmented (Applicable to all models)
AS2.............................6" to increase cable terminating height
AS3.............................12" to increase cable terminating height
AS4.............................18" to increase cable terminating height
AS5.............................24" to increase cable terminating height

Compartmented (Applicable to all models)
AS6.............................6" to increase cable terminating height
AS7.............................12" to increase cable terminating height
AS8.............................18" to increase cable terminating height
AS9.............................24" to increase cable terminating height

BUS
C...............................Copper Bus (main and all termination points)

FUSE STORAGE HOOKS
Hooks to hang three complete fuse assemblies on fuse-compartment door.
E2..........................Compartment 4. Applicable to PSE-6, -11
E4..........................Compartment 1. Applicable to PSE-5, -6, -7, -8, -9, -11
E5..........................Compartment 2. Applicable to PSE-6, -7, -8, -9, -11, -12
E6..........................Compartment 3. Applicable to PSE-6, -7, -8, -9, -11, -12

FINISH COLOR & SPECIAL CABINET MATERIAL
(Applicable to all models)
F2..........................ANSI #61 light gray
F3..........................ANSI #70 sky gray
F4..........................Type 304 stainless-steel cabinet (exterior only)
F5..........................Coal Tar coating on lower three inches of enclosure or optional base spacer
F6..........................All Type 304 Stainless-Steel Cabinet and internal parts (or non-ferrous) hardware, except switch frame and all current-carrying parts.

KEY INTERLOCKS AND SECURITY BOLTS
Name of ultimate user, installation number and location of pad-mounted switchgear required with order.
H..............................Hex-head security bolts in lieu of standard penta-head security bolts on all access doors. Applicable to all models.
K1..........................Anti-parallel key interlocks to prevent paralleling switches in Compartments 1 & 2. Applicable to PSE-6, -9, -10, -11, -13.
K2..........................Provisions to padlock switch in open or closed position. All models except PSE-4.
K3..........................Key interlock to prevent opening fuse access door until all switches are locked open. Applicable to PSE-5, -6, -7, -8, -9, -11, -12.
K4..........................Anti-parallel and fuse access key interlock to prevent paralleling of switches in Compartments 1 & 2 and to prevent opening fuse access door until all switches are locked open. Applicable to PSE-6, -9, -10, -11, -13

FAULT INDICATOR PROVISIONS
T6..........................Mounting provisions only. To accommodate one three-phase fault indicator in each switch compartment. Applicable to all models except PSE-4.
T7..........................Mounting provisions only with viewing window, to accommodate one three-phase fault indicator with fault indicator viewing window on associated door. Applicable to all models except PSE-4.

For LED-Type Fault Indicators and other special options, consult factory.
STANDARD SPECIFICATION FOR TYPE PSE DEAD-FRONT PAD-MOUNTED SWITCHGEAR

A. General

1. Product
The pad-mounted gear shall be in accordance with the applicable plans, drawings and one-line diagrams and shall conform to these specifications.

2. Assembly
The outdoor pad-mounted gear shall consist of a single self-supporting enclosure, containing three-phase group-operated interrupter switches and three-phase sets of single-pole fuses with the necessary accessory components, all completely factory assembled and operationally checked.

3. Coordination
To ensure a completely coordinated design, the pad-mounted gear shall be integrally designed and produced by the manufacturer of the basic switching equipment.

4. Ratings
Ratings for the integrated pad-mounted assembly shall be as designated below

<table>
<thead>
<tr>
<th>System Voltage Class</th>
<th>15kV†</th>
<th>25kV†</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV, Nominal</td>
<td>14.4</td>
<td>25</td>
</tr>
<tr>
<td>kV, Maximum Design</td>
<td>17.5</td>
<td>278</td>
</tr>
<tr>
<td>kV, BIL</td>
<td>95</td>
<td>125</td>
</tr>
<tr>
<td>Main Bus Continuous, Amps</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Switch Load-Interrupting, Amps</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Switch Fuse Load-Interrupting, Amps</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

5. Certification of Ratings
The manufacturer shall be completely and solely responsible for the performance of the basic switch and fuse components as well as the complete integrated pad-mounted gear assembly as rated.

The manufacturer shall furnish, upon request, certification of ratings of the basic switch and fuse components and/or the integrated pad-mounted gear assembly consisting of the switch and fuse components in combination with the enclosure. This certification of the integrated unit shall include testing the pad-mounted gear to the fault-close requirements of the specification to assure the bus support system and components are adequate.

<table>
<thead>
<tr>
<th>System Voltage Class</th>
<th>15kV†</th>
<th>25kV†</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV, Nominal</td>
<td>14.4</td>
<td>25</td>
</tr>
<tr>
<td>kV, Maximum Design</td>
<td>17.5</td>
<td>278</td>
</tr>
<tr>
<td>kV, BIL</td>
<td>95</td>
<td>125</td>
</tr>
<tr>
<td>Main Bus Continuous, Amps</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Switch Load-Interrupting, Amps</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Switch Fuse Load-Interrupting, Amps</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

B. Switch Short-Circuit Ratings

<table>
<thead>
<tr>
<th>Amps, RMS Symmetrical</th>
<th>Standard 14,000, 12,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Withstand Current, Amperes</td>
<td>Standard 36,400, 32,500</td>
</tr>
<tr>
<td>MVA, 3-Phase Symmetrical at Rated Nominal Voltage</td>
<td>Standard 350, 540</td>
</tr>
<tr>
<td>Fault-Closing Amps, RMS, Asym., 3-Time Duty-Cycle©</td>
<td>Standard 22,400, 20,000</td>
</tr>
<tr>
<td></td>
<td>HFC 25,000, 25,000</td>
</tr>
<tr>
<td></td>
<td>HFC 65,000, 65,000</td>
</tr>
<tr>
<td></td>
<td>HFC 620, 1,080</td>
</tr>
<tr>
<td></td>
<td>HFC 40,000, 40,000</td>
</tr>
</tbody>
</table>

© These are nominal switch ratings. Integrated pad-mounted unit may be limited by fuse ratings. Use fuse rating chart in next column to select proper short circuit ratings.

The fuse mounting can withstand rated fault amperes up to three times and remain operable and able to carry its rated load current. For rating applicable to fault-closing capability of the separable connector (elbow), refer to elbow manufacturer.

Maximum current rating of the fuse mounting is 22,400 amperes rms asymmetrical. Fuse mounting ratings can be increased to the fuse- interrupting rating only if the current-limiting fuse limits the let-through current to a value equal to or less than the short-circuit rating of the fuse mounting. Refer to current-limiting fuse manufacturer.

Models with this fuse-type are not UL® Listed.

Check with the factory for UL® Listed.

* 100 amp @ 13.5 kV max or 80 amp @ 15 kV.
† Maximum design of the 27kV switch is 29 kV.
§ For UL® Listed units, ratings are 15.5 kV, 14,000 or 25,000 amperes rms symmetrical, 350 MVA, 22,400 or 40,000 amperes fault closing; and 27 kV, 25,000 amperes rms symmetrical, 1080 MVA, 40,000 amperes asymmetrical fault closing.

6. Submittals
When requested, the manufacturer shall furnish the following drawings and reports:

a) Layout showing dimensions, arrangements, electrical ratings, components and weights.

b) Certified test reports of similar manufactured units showing fault-closing capability and load-interrupting capability of switches and complete pad-mounted gear assembly based on maximum design voltage.

7. Compliance with Standards & Codes
The pad-mounted switchgear shall conform to or exceed the applicable requirements of the following standards and codes:

a) All portions of ANSI/IEEE C57.12.28, covering enclosure integrity for pad-mounted equipment.

b) Article 490.21(E) "Load Interrupters" in the National Electrical Code, which specifies that the interrupter switches
in combination with power fuses shall safely withstand the effects of closing, carrying, and interrupting all possible currents up to the assigned maximum short-circuit rating.

c) All portions of IEEE C37.74 covering design and testing of the distribution switchgear, components and ways.

d) All portions of ANSI, IEEE, and NEMA standards applicable to the basic switch and fuse components.

8. **Enclosure Design**

To ensure a completely coordinated design, the pad-mounted gear shall be constructed in accordance with the minimum construction specifications of the fuse and/or switch manufacturer to provide adequate electrical clearances and adequate space for fuse handling.

In establishing the requirements for the enclosure design, consideration shall be given to all relevant factors such as controlled access and tamper resistance.

B. Construction - Assembly

1. **Insulators, Bushings and Bushing Wells**

The interrupter-switch and fuse-mounting insulators and the bushings and bushing wells shall have the following material characteristics and restrictions:

a) Operating experience of at least twenty (20) years under similar conditions.

b) Ablative action to ensure non-tracking properties.

c) Adequate leakage distance established by test per IEC Standard 60507.

d) Adequate strength for short-circuit stress established by test.

e) Conformance with applicable ANSI standards.

f) Homogeneity of the cycloaliphatic epoxy resin throughout each insulator, bushing and bushing well to provide maximum resistance to power arcs. Ablation due to high temperature from power arcs shall continuously expose more material of the same composition and properties so that no change in mechanical or electrical characteristics takes place because of arc-induced ablation. Furthermore, any surface damage to insulating components during installation or maintenance of the pad-mounted gear shall expose material of the same composition and properties so that insulating components with minor surface damage need not be replaced.

g) Each insulator, bushing and bushing well shall be x-rayed to assure it is essentially void free. An alternate testing method may be used only by approval of the engineer.

h) Conductor rods of bushings and bushing wells shall be of all copper with silver flash at threaded studs.

2. **High-Voltage Bus**

a) Bus and interconnections shall consist of bare aluminum bar of 56% IACS conductivity with an oxide-inhibiting agent at all bus joints.

b) Bus and interconnections shall withstand the stresses associated with short circuits up to the maximum rating of the pad-mounted gear, including proper allowance for transient conditions.

c) Bolted aluminum-to-aluminum connections shall be made with a suitable number of non-corrosive bolts and with two Belleville spring washers per bolt, one under the bolt head and one under the nut, or with a wide, flange-head bolt and one Belleville spring washer under the nut per bolt. As an alternate, bolted aluminum-to-aluminum connections shall be made with a suitable equivalent surface area, i.e. 1-bolt and spring washer. Bolts shall be tightened to an appropriate torque to assure good electrical connection.

d) Before installation of the bus, all electrical contact surfaces shall first be prepared by abrading to remove any aluminum-oxide film. Immediately after this operation, the electrical contact surfaces shall be coated with a uniform coating of an oxide inhibitor and sealant.

The following optional feature may be specified:

k) A steel (specify compartmented or non-compartmented) base spacer shall be provided to increase the elevation of
live parts in the pad-mounted gear above the mounting pad by (specify 6, 12, 18, 24) inches.

2. **Barrier Assembly**
 Insulating barriers shall be provided in each switch and fuse compartment as required to achieve necessary insulation levels. This barrier system shall be constructed of fiberglass reinforced polyester (NEMA rated GPO-3).

3. **Doors**
 a) Doors shall be constructed of 11-gauge hot-rolled, pickled- and-oiled steel sheet.
 b) Door edge flanges shall overlap with door opening flanges and shall be formed to create a mechanical maze that shall guard against water entry or discourage tampering or insertion of foreign objects.
 c) Doors shall have a minimum of three stainless steel hinges and hinge pins. The hinge pins shall be secured in place to guard against tampering.
 d) One active and one passive door shall be provided. In consideration of controlled access and tamper resistance, each active door shall be equipped with a positive-action three-point auto-latch mechanism and padlock hasp.
 e) Each active door shall be provided with a hinged stainless-steel cover over the operating bolt. The cover shall be padlockable and shall incorporate a hood to protect the padlock shackle from tampering and access to the operating bolt. Each handle shall be provided with a recessed pentagon (hex optional) bolt for additional security.
 f) Each passive door shall be independently secured and latched to the enclosure and shall not require a tool for opening.
 g) Doors providing access to fuses shall have provisions to store spare expulsion type fuse units or refills.
 h) Each door shall be provided with a stainless-steel door holder located above the door opening. These holders shall be hidden from view when the door is closed. It shall not be possible for the holders to swing inside the enclosure.

4. **Finish**
 a) Full coverage at joints and blind areas shall be achieved by processing enclosures independently of components such as doors and roofs before assembly into the unitized structures.
 b) All exterior seams shall be sanded or ground smooth for neat appearance.
 c) All surfaces shall undergo a chemical cleaning, phosphatizing or zirconization and sealing process before any protective coatings are applied in order to remove oils and dirt, form a chemically and anodically neutral conversion coating, improve the finish-to-metal bond, and retard underfilm propagation of corrosion.
 d) The finishing system shall be applied without sags or runs.
 e) After the enclosure is completely assembled and the components (switches, bus, etc.) are installed, the finish shall be inspected for scuffs and scratches.
 f) Blemishes shall be carefully touched up by hand to restore the protective integrity of the finish.
 g) Unless otherwise specified, the color shall be Munsell No. 7GY3.29/1.5, dark green.
 h) To ensure that the finishing system is capable of resisting corrosion, the manufacturer shall provide on request, certification that representative test panels, protected by the manufacturer’s finish system, have passed the coating system performance requirements in section 5.5 of ANSI C57.12.28 as verified by an independent third party certifier, such as UL®.

D. **Basic Components**

1. **Interrupter Switches**
 a) Interrupter switches shall have a three-time duty-cycle fault-closing rating equal to or exceeding the short circuit rating of the integrated pad-mounted gear assembly. These ratings define the ability to close the interrupter switch either alone (unfused) or in combination with the appropriate power fuses three times against a three-phase fault with asymmetrical current in at least one phase equal to the rated value, with the switch remaining operable and able to carry and interrupt rated current. Tests substantiating these ratings shall be performed at maximum design voltage with current applied for at least 10 cycles. Certified test abstracts establishing such ratings shall be furnished upon request.
 b) Interrupter switches shall utilize a quick-make, quick-break mechanism installed by the switch manufacturer. The quick-make, quick-break mechanism shall be integrally mounted on the switch frame, and shall swiftly and positively open and close the interrupter switch independent of the speed of the switch operating handle.
 c) Interrupter switches shall be operated by means of an externally accessible switch-operating hub. The switch-operating hub shall be located within a recessed stainless-steel pocket mounted on the side of the pad-mounted enclosure. The switch-operating hub pocket shall include a padlockable stainless-steel access cover that shall incorporate a hood to protect the padlock shackle from tampering. Labels or targets to indicate switch positions shall be provided in the switch operating hub pocket.
 d) Each interrupter switch shall be completely assembled and adjusted by the switch manufacturer on a rigid mounting frame. The frame shall be of heavy-gauge steel construction.
 e) Interrupter switch shall be provided with contact blades and interrupters for circuit closing, including fault-closing, continuous current carrying, and circuit interrupting. Spring loaded auxiliary blades shall not be permitted.
 f) Circuit interruption shall be accomplished by use of an interrupter which is positively and inherently sequenced with the blade position. It shall not be possible for the blade to get out of sequence.
 g) Interrupter switches shall have a readily visible open gap when in the open position, which shall be viewable through a mar-resistant clear barrier to allow positive verification of correct switch position. In addition, an open/close label shall be provided in the termination compartment to give a supplemental visual indication of switch position.
 h) Each interrupter switch shall be provided with a switch operating handle. The switch-operating handle shall be secured to the inside of the switch-operating hub pocket and shall be stored behind the switch-operating hub access cover.
 i) To increase contact separation speed, interrupter switch contacts on both sides of the arcing area shall be spring assisted to reduce arcing time and to rapidly increase the dielectric gap.
 j) To further insure arc extinction, air shall be compressed and simultaneously injected into the arcing area to cool the arc and thereby not rely solely on blade travel to insure arc extinction.
b) Fuse terminals shall be equipped with 200 ampere rated bushing studs to accommodate a choice of termination systems.

c) Parking stands are provided adjacent to each bushing and bushing well to accommodate horizontal feed-throughs and standoff insulators.

d) All medium-voltage switch and fuse components are completely encased in an inner grounded steel compartment. The compartment floor shall be of 18-gauge galvanized steel sheet to exclude foliage and animals. The floor shall be cross-kinked and shall have a small stainless-steel screen in each corner.

e) Viewing windows are provided within the termination compartments to allow visual verification of switch position, observation of switch-position open/close labels and inspection of blown-fuse indicators on power fuses.

3. Fuse Compartments

a) Fuse terminals are equipped with 200 ampere rated bushing wells designed to accept 200 ampere bushing inserts and shall have removable, silver-plated copper studs.

b) Bushings and bushing wells shall have interfaces in accordance with ANSI/IEEE Standard 386 (ANSI Standard C119.2) to accept all standard separable insulated connectors and inserts. Parking stands are provided adjacent to each bushing and bushing well to accommodate horizontal feed-throughs and standoff insulators.

c) Fuse access panels shall have a mechanical interlock that guards against gaining access to the fuse before opening the load-break separable insulated connector at the fuse terminal.

d) The fuse shall be accessible only when de-energized and isolated — for full-view non-loadbreak disconnection and removal with a shotgun stick. This mounting features positive latching in both the energized and de-energized positions. When latched in the open position, the de-energized fuse is electrically isolated and readily accessible to operating personnel for removal with full visibility of contact interfaces on both sides of the fuse.

e) Access to the compartment containing energized components when fuses are being changed shall be blocked by a GPO-3 panel that is secured in position.

f) Individual parking stands shall be provided for each fuse mounting to allow convenient installation of elbow accessories to accommodate grounding. A ground rod shall be installed across the full width of the fuse compartments for connecting of cable concentric neutrals. Fuse phases shall be equipped with cable guides to assist in cable training and to prevent cables from interfering with movement of the fuse-access panel.

g) To provide maximum service life and to prevent corrosion of moving parts, all latches and pivots in the fuse-handling mechanism shall be either painted steel, stainless steel, or zinc-plated.

The following optional features may be specified:

h) Fuse storage hooks shall be provided on fuse-termination compartment access door(s). Each set of hooks shall allow the storing of three complete fuse assemblies for power fuses. Storage hooks shall be for two holders when current-limiting fuses are used.

E. Labeling

1. Warning Signs

All external doors shall be provided with approved “WARNING — HIGH VOLTAGE — KEEP OUT” signs.

2. Nameplate, Ratings Labels & Connection Diagrams

a) The outside of both the front and back shall be provided with nameplates indicating the manufacturer’s name, catalog number, model number, and date of manufacture.

b) The inside of each door shall be provided with a ratings label indicating the following: voltage ratings; main bus continuous rating; short-circuit ratings (amperes, RMS symmetrical and MVA three-phase symmetrical at rated nominal voltage); the type of fuse and its ratings including duty-cycle fault-closing capability; and interupter switch ratings, including duty-cycle fault-closing capability and amperes, short-time, RMS (momentary asymmetrical and one-second symmetrical). A label indicating equipment is UL® Listed shall be included when applicable.

c) A three-line connection diagram showing interupter switches, fuses and bus along with the manufacturer’s model number shall be provided on the inside of both the front and rear doors, and on the inside of each switch-operating hub access cover.

F. Accessories

End fittings or holders, and fuse units or refill units for original installation, as well as spare fuse unit or refill unit for each fuse mounting, shall be furnished in accordance with the client’s requirements when specified.
The 6-Compartment Federal Pacific Dead-Front PSE Pad-Mounted Switchgear (available as UL® Listed) expands the load segmentation possibilities for underground distribution systems by allowing larger concentrated loads to be served from a single enclosure, requiring less space and less expense.

Features:
- Available as UL® Listed
- Dead-Front 600-Ampere Switch Compartments
- Dead-Front 200-Ampere Fuse Compartments
- Manual, Automatic Source Transfer, and SCADA Controlled
- 5-600 ampere switches in a bus-tie arrangement
- 4—600-ampere switches plus two sets of fused feeders in a single enclosure
- 2—600-ampere switches plus four sets of fused feeders in a single enclosure
- Meets all preferred and optional ratings in IEEE C37.74.
- Meets Enclosure Security requirements in ANSI C57.12.28
- Other configurations as needed, consult factory
- 1200-ampere models, consult factory

Federal Pacific 6-Compartment, Dead-Front PSE Pad-Mounted Switchgear provides the convenience of installing a single enclosure with two 600-ampere switches and up to four three-phase sets of fuses, or five 600-ampere switches in a bus-tie arrangement. Installations with concentrated loads can now be served from a single switchgear assembly. The six-compartment configurations require less land space than two four-compartment units, which was the only choice in the past. In addition, the 6-compartment units are more economical than two four-compartment units.
Enclosure integrity and security is assured with Federal Pacific Dead-Front Type PSE Pad-Mounted Switchgear.

Dead-Front switches, in compartments on left and on right, utilize 600-ampere bushings, accommodating 600-ampere elbow connectors. Dead-Front fuses in center compartment accommodate 200-ampere load-break inserts and elbows.
Interior view of fuse-termination compartments of Federal Pacific Dead-Front 6-Compartment Pad-Mounted Switchgear accommodates a wide variety of fuses rated to 200-amperes.
Typical configurations for models of Federal Pacific Dead-Front 6-Compartment Pad-Mounted Switchgear. Consult factory for other available circuit configurations. Dimensions vary depending on circuit configuration, however, a typical dimension is 50"H x 123"W x 72.75"D. Do not use dimensions for construction purposes.